Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials.
نویسندگان
چکیده
Sacrificial bonds and hidden length in structural molecules and composites have been found to greatly increase the fracture toughness of biomaterials by providing a reversible, molecular-scale energy-dissipation mechanism. This mechanism relies on the energy, of order 100 eV, needed to reduce entropy and increase enthalpy as molecular segments are stretched after being released by the breaking of weak bonds, called sacrificial bonds. This energy is relatively large compared to the energy needed to break the polymer backbone, of order a few eV. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby additionally providing a "self-healing" property to the material. Due to the nanoscopic nature of this mechanism, single molecule force spectroscopy using an atomic force microscope has been a useful tool to investigate this mechanism. Especially when investigating natural molecular constructs, force versus distance curves quickly become very complicated. In this work we propose various types of sacrificial bonds, their combination, and how they appear in single molecule force spectroscopy measurements. We find that by close analysis of the force spectroscopy curves, additional information can be obtained about the molecules and their bonds to the native constructs.
منابع مشابه
Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture.
Properties of the organic matrix of bone as well as its function in the microstructure could be the key to the remarkable mechanical properties of bone. Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules. Here we present evidence for how this sacrificial bond and hidden length...
متن کاملCrack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
Sacrificial bonds and hidden length (SBHL) in structural molecules provide a mechanism for energy dissipation at the nanoscale. It is hypothesized that their presence leads to greater fracture toughness than what is observed in materials without such features. Here, we investigate this hypothesis using a simplified model of a mineralized collagen fibril sliding on a polymeric interface with SBH...
متن کاملDynamics of Polymer Molecules with Sacrificial Bond and Hidden Length Systems: Towards a Physically-Based Mesoscopic Constitutive Law
We investigate the entropic force-elongation behavior of a polymer chain in the presence of the sacrificial bond and hidden length (SBHL) system observed experimentally in many biomaterials. We show that in most cases the SBHL system leads to a significant increase in toughness. However, the presence of a large number of bonds or relatively strong bonds in the SBHL system can reduce the net gai...
متن کاملTough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.
Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent ...
متن کاملFacile synthesis of Mesoporouscobalt Hexacyanoferrate Nanocubes for High-Performance Supercapacitors
Mesoporous cobalt hexacyanoferrate nanocubes (meso-CoHCF) were prepared for the first time through a facile sacrificial template method. The CoHCF mesostructures possess a high specific surface area of 548.5 m²·g-1 and a large amount of mesopores, which enable fast mass transport of electrolyte and abundant energy storage sites. When evaluated as supercapacitor materials, the meso-CoHCF materia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2006